Math, asked by priyashabaaduwal, 6 months ago

If 2a°, 3a°,4a° and 6a° are the the angles of a quadrilateral, find them
Please show full process

Answers

Answered by ItzMysticalBoy
58

Answer:

Given:-

Angles of a Quadiratral are=2a,3a,4a,6a

To find:-

Measures of each angle

Solution

As we know that in a Quadiratral

{\boxed{\sf Sum\:of\:angles=360°}}

  • Substitute the values

\qquad\quad {:}\longmapsto\sf 2a+3a+4a+6a=360

  • Simplify

\qquad\quad {:}\longmapsto\sf 5a+10a=360

\qquad\quad {:}\longmapsto\sf 15a=360

\qquad\quad {:}\longmapsto\sf a=\cancel{{\dfrac {360}{15}}}

\qquad\quad {:}\longmapsto\sf a=24

__________________________

\qquad\quad {:}\longmapsto\sf 2a=2×24=48°

\qquad\quad {:}\longmapsto\sf 3a=3×24=72°

\qquad\quad {:}\longmapsto\sf 4a=4×24=96°

\qquad\quad {:}\longmapsto\sf 6a=6×24=144°

\therefore\sf The \:angles\:are\;48°,72°,96°\:and\:144°.

Answered by Anonymous
15

\begin{gathered}\sf \large \red{\underline{ Question:-}}\\\\\end{gathered}

If 2a°, 3a°,4a° and 6a° are the the angles of a quadrilateral, find them

\begin{gathered}\\\\\sf \large \red{\underline{Given:-}}\\\\\end{gathered}

Angles of the quadrilateral are given = 2a°, 3a°,4a° and 6a°

\begin{gathered}\\\\\sf \large \red{\underline{To \: Find:-}}\\\\\end{gathered}

The angles of the triangle.

\begin{gathered}\\\\\sf \large \red{\underline{Solution :- }}\\\\\end{gathered}

First we need to find the value of a to find the value of the angles of the quadrilateral:–

 \large\underbrace{ \sf { We \: know \: angles \: of \: a \: quadrilateral\: = 360 ^ \circ}}

 \qquad \quad :  \longrightarrow \sf{2a + 3a + 4a + 6a = 360} \\

\qquad \quad :  \longrightarrow \sf{15a = 360}

\qquad \quad :  \longrightarrow \sf{a =  \dfrac{ \cancel{360}^{ \large24} }{ \cancel{15}} _ {\large{1}} }

\qquad \quad :  \leadsto  \underline{\boxed{\sf \pink{a = 24}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Now when we know the value of a let find the angles of the quadrilateral:

\qquad \quad \bull \sf \quad{2a = 2 \times 24 =  \pink{48 ^ {\circ}}}

\qquad \quad \bull \sf \quad{3a = 3 \times 24 =  \pink{72 ^ {\circ}}}

\qquad \quad \bull \sf \quad{4a = 4 \times 24 = \pink{96 ^{ \circ}}  }

\qquad \quad \bull \sf \quad{6a = 6 \times 24 =  \pink{144   ^ {\circ}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions