Math, asked by Anonymous, 5 months ago

If 2a°, 3a°,4a° and 6a° are the the angles of a quadrilateral, find them
Please show full process​

Answers

Answered by Anonymous
15

Answer:

Given:-

Angles of a Quadiratral are=2a,3a,4a,6a

To find:-

Measures of each angle

Solution

As we know that in a Quadiratral

{\boxed{\sf Sum\:of\:angles=360°}}

Substitute the values

\qquad\quad {:}\longmapsto\sf 2a+3a+4a+6a=360

Simplify

\qquad\quad {:}\longmapsto\sf 5a+10a=360

\qquad\quad {:}\longmapsto\sf 15a=360

\qquad\quad {:}\longmapsto\sf a=\cancel{{\dfrac {360}{15}}}

\qquad\quad {:}\longmapsto\sf a=24

__________________________

\qquad\quad {:}\longmapsto\sf 2a=2×24=48°

\qquad\quad {:}\longmapsto\sf 3a=3×24=72°

\qquad\quad {:}\longmapsto\sf 4a=4×24=96°

\qquad\quad {:}\longmapsto\sf 6a=6×24=144°

\therefore\sf The \:angles\:are\;48°,72°,96°\:and\:144°.

Answered by Anonymous
9

Step-by-step explanation:

2a°+3a°+4a°+6a°=360°( sum of angles of a quadrilateral)

so 15a°=360°

=>a=360/15

=>a=24°

so 2a=24×2=48°,3a=3×24=72°,4a=4×24=96;6a=6×24= 144°

Similar questions