If 2a2 – 2ab + b2 + 6a + 9 = 0, then (a + b) + ab equals?
Answers
Step-by-step explanation:
Please find below the solution to the asked query:
We have : 2 a2 - 2 ab + b2 + 6 a + 9 = 0 , So
⇒ a2 - 2 ab + b2 + a2 + 6 a + 9 = 0
⇒( a2 - 2 ab + b2 ) + ( a2 + 2 ( a ) ( 3 ) + 32 )= 0
⇒( a - b )2 + ( a + 3 )2 = 0
We know sum of any two square term only be equal to zero if all terms ( here both terms ) are equal to zero , So
( a - b )2 = 0
a - b = 0
a = b --- ( 1 )
And
( a + 3 )2 = 0 ,
a + 3 = 0
a = - 3 , From equation 1 we get
a = b = - 3
So ,
Values of ( a + b ) + a b we get by substituting values of ' a ' and ' b ' .
⇒ ( - 3 + ( - 3 ) ) + ( - 3 ) ( - 3 )
⇒ ( - 3 - 3 ) + 9
⇒ - 6 + 9
⇒ 3 ( Ans )
Hope this information will clear your doubts about topic.