Math, asked by riyamary14, 1 year ago

If 2cos^2theta -1 =0 and angle theta is less than 90 degree,find the value of theta and hence find the value of sin^2theta + tan^2 theta​

Answers

Answered by muskanc918
28

\huge\sf{Answer:}

\large\sf{\implies\:\theta=45\degree}

\large\sf{\implies\:{\sin}^{2}\theta +{\tan}^{2}\theta=\frac{3}{2}}

\large\sf{\underline{\star{Step-by-Step-Explanation-}}}

\large\sf{\implies 2 \: { \cos}^{2} \theta - 1 = 0 }

\large\sf{\implies 2  \: { \cos}^{2}   \theta = 1 }

\large\sf{ \implies { \cos}^{2}  \theta = \frac{1}{2} }

\large\sf{\implies  \cos \: \theta =  \sqrt{ \frac{1}{2} }}

\large\sf{\implies \cos \: \theta = \frac{1}{ \sqrt{2} }  }

\large\sf{\implies \cos \: \theta =  \cos \: 45 \degree }

\large\sf{\implies \theta = 45 \degree}

\large\sf{Now,}

\large\sf{={\sin}^{2}\theta +{\tan}^{2}\theta}

\large\sf{={\sin}^{2}\:45\degree+{\tan}^{2}\:45\degree }

\large\sf{ = {(\frac{1}{\sqrt{2}})}^{2}+{(1)}^{2}   }

\large\sf{=\frac{1}{2}+1}

\large\sf{=\frac{1+2}{2}}

\large\sf{=\frac{3}{2}}

\large\sf{Hence,}

\large\sf{\boxed{\implies\:\theta=45\degree}}

\large\sf{\boxed{\implies\:{\sin}^{2}\theta +{\tan}^{2}\theta=\frac{3}{2}}}


Anonymous: Nice❤️
Similar questions