If 2cos^2theta +sin theta-2=0 and 0°great than or equal to theta greater than or equal to 90°;find the value of theta
Answers
Answer:
θ = 30 °
Step-by-step explanation:
Heya friend !
Here it goes:
2 θ + sin θ - 2 = 0 ,
where 0° ≥ θ ≤ 90°
Now,
2 (1 - ) θ + sin θ - 2 = 0,
as, θ + θ = 1 . So,
θ = 1 - θ
2 - 2 θ + sin θ -2 = 0
sin θ - 2 θ = 0
sin θ (1 - 2 sin θ) = 0
1 - 2 sin θ = 0
- 2 sin θ = - 1
So,
sin θ = 1 / 2
and,
we know,
sin 30° = 1/2
So,
θ = 30 °
Thanks,
Manav
Answer:
θ ≤ 90°
θ ≤ 90°Now,
θ ≤ 90°Now,2 (1 - sin^{2}sin
θ ≤ 90°Now,2 (1 - sin^{2}sin 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So,
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2 θ = 0
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2 θ = 0sin θ (1 - 2 sin θ) = 0
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2 θ = 0sin θ (1 - 2 sin θ) = 0 1 - 2 sin θ = 0
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2 θ = 0sin θ (1 - 2 sin θ) = 0 1 - 2 sin θ = 0- 2 sin θ = - 1
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2 θ = 0sin θ (1 - 2 sin θ) = 0 1 - 2 sin θ = 0- 2 sin θ = - 1So,
θ ≤ 90°Now,2 (1 - sin^{2}sin 2 ) θ + sin θ - 2 = 0,as, sin^{2}sin 2 θ + cos^{2}cos 2 θ = 1 . So, cos^{2}cos 2 θ = 1 - sin^{2}sin 2 θ2 - 2 sin^{2}sin 2 θ + sin θ -2 = 0sin θ - 2 sin^{2}sin 2 θ = 0sin θ (1 - 2 sin θ) = 0 1 - 2 sin θ = 0- 2 sin θ = - 1So,sin θ = 1 / 2
sin 30° = 1/2