Math, asked by luckyluckybisen, 6 months ago

If 2cos 2x =1 then x is equal to

Answers

Answered by MaheswariS
1

\underline{\textbf{Given:}}

\mathsf{2\;cos\,2x=1}

\underline{\textbf{To find:}}

\textsf{Solution of the trigonometric equation}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{2\;cos\,2x=1}

\textsf{This can be written as,}

\mathsf{cos\,2x=\dfrac{1}{2}}

\mathsf{cos\,2x=cos\,\dfrac{\pi}{3}}

\implies\mathsf{2x=2n\pi{\pm}\dfrac{\pi}{3}}

\implies\mathsf{x=n\pi{\pm}\dfrac{\pi}{6},\;\;\;n{\in}Z}

\underline{\textbf{Formula used:}}

\boxed{\begin{minipage}{5cm}$\mathsf{If\;cos\,\theta=cos\,\alpha,\;then\;\theta=2n\pi{\pm}\alpha}\\\\\mathsf{where\;n{\in}Z}$\end{minipage}}

Answered by mahimapanday53
0

Concept

Trignometry is a field of mathematics that investigates the connection between triangle side lengths and angles.

Given

2cos (2x) =1

Find

Value of x

Solution

We are given with;

2cos (2x) =1

Dividing either sides by 2

\frac{2cos (2x)}{2}  =\frac{1}{2} \\cos (2x) = \frac{1}{2}\\cos (2x) = cos\frac{\pi }{3} \\       ....... (1)

Now, we know that

if\ cos\alpha = cos\beta \\Then\ \alpha = 2n\pi \frac{+}{} \beta  ....... (2)

Using this formula in equation 1

2x = 2n\pi \frac{+}{} \frac{\pi}{3} \\x = n\pi \frac{+}{} \frac{\pi}{6},\    n\in Z

Therefore, x = n\pi \frac{+}{} \frac{\pi}{6},\    n\in Z

Similar questions