If 2cos^2x + 7sinx = 5 find the permissible value of sin x??
Answers
Answered by
1
Answer:
1/2
Step-by-step explanation:
2(1-sin^2x)+7sinx=5
2-2sin^2x+7sinx=5
2sin^2x-7sinx-2=-5
2sin^2x-7sinx-2+5=0
2sin^2x-7sinx+3=0
let take sinx=a
so 2a^2-7a+3=0
2a^2-6a-a+3=0
2a(a-3)-1(a-3)=0
(2a-1)(a-3)=0
2a-1=0 or a-3=0
a=3
it's not possible why because the maximum value of sin is 1
so 2a-1=0
2a=1
a=1/2
so sinx=1/2
Similar questions