Math, asked by ashnakalra47, 10 months ago

If 2cos theta - sin theta =0 then tan4 theta + cot⁴ theta is
 \frac{257}{16}
True or false? ​

Answers

Answered by bkpanda7015207073
3

True

Thank you for question

#answerwithquality

#BAL

Attachments:
Answered by jitumahi435
2

\tan^4 \theta + \cot^4 \theta = \dfrac{257}{16}, true.

Step-by-step explanation:

We have,

2\cos \theta - \sin \theta = 0

State \tan^4 \theta + \cot^4 \theta = \dfrac{257}{16}, True or False.

∴ 2\cos \theta - \sin \theta = 0

\sin \theta = 2\cos \theta

\dfrac{\sin \theta}{\cos \theta} = 2

\tan \theta = 2

\tan^4 \theta = 2^4 = 16 [ ∵ \cot A = \dfrac{1}{\tan A}]

\cot^4 \theta = \dfrac{1}{16}

L.H.S. = \tan^4 \theta + \cot^4 \theta

= 16 + \dfrac{1}{16}

= \dfrac{256+1}{16}

= \dfrac{257}{16}

= R.H.S., True.

Thus, \tan^4 \theta + \cot^4 \theta = \dfrac{257}{16}, true.

Similar questions