Math, asked by Nehachattru, 1 year ago

If 2cos theta-sin theta=x and cos theta-3 sin theta =y. prove that 2x^+y^-2xy=5

Answers

Answered by Anonymous
2

According to the Question


(2 cosθ - sinθ) = x   (cosθ - 3 sinθ) = y


Substitute the values of x and y


2x^2 + y^2 − 2xy (Left Hand Side)



= 2(2 cosθ − sinθ)2 + (cosθ − 3 sinθ)2 − 2(2 cosθ − sinθ)(cosθ − 3 sinθ)


= 2(4cos^2θ − 4cosθ sinθ + sin^2θ) + (cos^2θ − 6cosθ sinθ + 9sin^2θ) - 2(2cos^2θ − 7cosθ sinθ + 3sin^2θ)


= 8cos^2θ − 8cosθ sinθ + 2sin^2θ + cos^2θ − 6cosθ sinθ + 9sin^2θ − 4cos^2θ + 14cosθ sinθ − 6sin^2θ


= 5cos^2θ + 5sin^2θ


= 5(cos^2θ + sin^2θ)


= 5(1) = 5    ⇒   ( cos^2θ + sin^2θ = 1)


LHS = RHS

Similar questions