If 2cos theta-sin theta=x and cos theta-3 sin theta =y. prove that 2x^+y^-2xy=5
Answers
Answered by
2
According to the Question
(2 cosθ - sinθ) = x (cosθ - 3 sinθ) = y
Substitute the values of x and y
2x^2 + y^2 − 2xy (Left Hand Side)
= 2(2 cosθ − sinθ)2 + (cosθ − 3 sinθ)2 − 2(2 cosθ − sinθ)(cosθ − 3 sinθ)
= 2(4cos^2θ − 4cosθ sinθ + sin^2θ) + (cos^2θ − 6cosθ sinθ + 9sin^2θ) - 2(2cos^2θ − 7cosθ sinθ + 3sin^2θ)
= 8cos^2θ − 8cosθ sinθ + 2sin^2θ + cos^2θ − 6cosθ sinθ + 9sin^2θ − 4cos^2θ + 14cosθ sinθ − 6sin^2θ
= 5cos^2θ + 5sin^2θ
= 5(cos^2θ + sin^2θ)
= 5(1) = 5 ⇒ ( cos^2θ + sin^2θ = 1)
LHS = RHS
Similar questions
Accountancy,
7 months ago
Math,
7 months ago
Biology,
1 year ago
English,
1 year ago
Biology,
1 year ago