Math, asked by diganthajain, 1 month ago

if 2cos²Θ+cosΘ-1=0 find Θ

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given Trigonometric equation is

\rm :\longmapsto\: {2cos}^{2}\theta  + cos\theta  - 1 = 0

Using splitting of middle terms, we get

\rm :\longmapsto\: {2cos}^{2}\theta  +2 cos\theta - cos\theta   - 1 = 0

\rm :\longmapsto\:2cos\theta (cos\theta  + 1) - 1(cos\theta  + 1) = 0

\rm :\longmapsto\:(2cos\theta  -  1)(cos\theta  + 1) = 0

\rm :\longmapsto\:cos\theta  = \dfrac{1}{2}  \:  \: or \:  \: cos\theta  =  - 1

Case :- 1

\rm :\longmapsto\:cos\theta  = \dfrac{1}{2}

\rm :\longmapsto\:cos\theta  = cos\dfrac{\pi}{3}

We know

\boxed{ \tt{ \: cosx = cosy\rm \implies\:  \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z \: }}

So, using this identity, we get

\rm \implies\:\boxed{ \tt{ \: \theta = 2n\pi \pm \:  \frac{\pi}{3} \: \forall \: n \in \: Z \:}}

Case :- 2

\rm :\longmapsto\:cos\theta  =  - 1

\rm :\longmapsto\:cos\theta  = cos\pi

\rm \implies\:\boxed{ \tt{ \: \theta = 2n\pi \pm \:\pi \: \forall \: n \in \: Z \:}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf T-eq & \bf Solution \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf sinx = 0 & \sf x = n\pi  \: \forall \: n \in \: Z\\ \\ \sf cosx = 0 & \sf x = (2n + 1)\dfrac{\pi}{2}\: \forall \: n \in \: Z\\ \\ \sf tanx = 0 & \sf x = n\pi\: \forall \: n \in \: Z\\ \\ \sf sinx = siny & \sf x = n\pi + {( - 1)}^{n}y \: \forall \: n \in \: Z\\ \\ \sf cosx = cosy & \sf x = 2n\pi \pm \: y\: \forall \: n \in \: Z\\ \\ \sf tanx = tany & \sf x = n\pi + y \: \forall \: n \in \: Z\end{array}} \\ \end{gathered}\end{gathered}

Similar questions