If 2costheta-sintheta=x and costheta-3sintheta=y,prove that 2x2+y2-2xy=5.
Answers
Answer
2cosθ-sinθ=x
or, x²=4cos²θ-4sinθcosθ+sin²θ
or, x²=3cos²θ- and
cosθ-3sinθ=y
or, y²=cos²θ-6sinθcosθ+9sin²θ
xy=(2cosθ-sinθ)(cosθ-3sinθ)
or, xy=2cos²θ-sinθcosθ-6sinθcosθ+3sin²θ
or, xy=2cos²θ-7sinθcosθ+3sin²θ
∴, 2x²+y²-2xy
=2(4cos²θ-4sinθcosθ+sin²θ)+cos²θ-6sinθcosθ+9sin²θ-2(2cos²θ-7sinθcosθ+3sin²θ)
=8cos²θ-8sinθcosθ+2sin²θ+cos²θ-6sinθcosθ+9sin²θ-4cos²θ+14sinθcosθ-6sin²θ
=5cos²θ+5sin²θ
=5(sin²θ+cos²θ)
=5 (Proved) [∵, sin²θ+cos²θ=1]
Hey mate here is your answer :-
2cosθ-sinθ=x
or, x²=3cos²θ- and
xy=(2cosθ-sinθ)(cosθ-3sinθ)
or, xy=2cos²θ-7sinθcosθ+3sin²θ
∴ 2x²+y²-2xy
= 2(4cos²θ-4sinθcosθ +sin²θ)+cos²θ-6sinθcosθ+9sin²θ-2(2cos²θ-7sinθcosθ+3sin²θ)
= 8cos²θ-8sinθcosθ+2sin²θ+cos²θ-6sinθcosθ+9sin²θ-4cos²θ+14sinθcosθ-6sin²θ
= 5cos²θ+5sin²θ
= 5 prooved....
Mark it as brainliest answer....