Math, asked by MistyKaur35961, 9 months ago

If 2cube+4 cube +6 cube +...........+(2n) Cube =k nsquare (n+1) square then k=?

Answers

Answered by kishore461mrj
0

Answer:

2

Step-by-step explanation:

stepwise answers given in the picture

Attachments:
Answered by pulakmath007
0

The value of k = 2

Given :

\displaystyle \sf{  {2}^{3} + {4}^{3} + {6}^{3}  + ...  + {(2n)}^{3} = k {n}^{2} {(n + 1)}^{2}  }

To find :

The value of k

Formula Used :

\displaystyle \sf{  {1}^{3} + {2}^{3} + {3}^{3}  + ...  + {n}^{3} } = {\bigg[ \frac{n(n + 1)}{2}  \bigg]}^{2}

Solution :

Step 1 of 2 :

Write down the given equation

Here the given equation is

\displaystyle \sf{  {2}^{3} + {4}^{3} + {6}^{3}  + ...  + {(2n)}^{3} = k {n}^{2} {(n + 1)}^{2}  }

Step 2 of 2 :

Find the value of k

\displaystyle \sf{  {2}^{3} + {4}^{3} + {6}^{3}  + ...  + {(2n)}^{3} = k {n}^{2} {(n + 1)}^{2}  }

\displaystyle \sf \implies  {(2 \times 1)}^{3} + {(2 \times 2)}^{3} + {(2 \times 3)}^{3}  + ...  + {(2 \times n)}^{3} = k {n}^{2} {(n + 1)}^{2}

\displaystyle \sf \implies   {2}^{3}\bigg[ {1}^{3} + {2}^{3} + {3}^{3}  + ...  + {n}^{3}\bigg]  = k {n}^{2} {(n + 1)}^{2}

\displaystyle \sf \implies   {2}^{3} \times {\bigg[ \frac{n(n + 1)}{2}  \bigg]}^{2}   = k {n}^{2} {(n + 1)}^{2}

\displaystyle \sf \implies   {2}^{3} \times  \frac{{n}^{2} {(n + 1)}^{2}}{ {2}^{2} }    = k {n}^{2} {(n + 1)}^{2}

\displaystyle \sf \implies  2{n}^{2} {(n + 1)}^{2}      = k {n}^{2} {(n + 1)}^{2}

\displaystyle \sf \implies  k{n}^{2} {(n + 1)}^{2}      = 2 {n}^{2} {(n + 1)}^{2}

\displaystyle \sf \implies k = 2

Hence the required value of k = 2

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

2. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

#SPJ3

Similar questions