Math, asked by nisanth6283, 10 months ago

If 2log(x-y/2)=logx logy log3 find the value of x/y y/x

Answers

Answered by lublana
5

\frac{x}{y}+\frac{y}{x}=14

Step-by-step explanation:

Given:

2log(\frac{x-y}{2})=logx+log y+log 3

We know that

log m+log n=log mn

Using the formula

2log(\frac{x-y}{2})=log 3xy

 log x^a=alog x

Using the formula

log(\frac{x-y}{2})^2=log 3xy

(\frac{x-y}{2})^2=3xy

(a-b)^2=a^2+b^2-2ab

Using the formula

\frac{x^2+y^2-2xy}{4}=3xy

x^2+y^2-2xy=12xy

x^2+y^2=12xy+2xy=14xy

\frac{x^2+y^2}{xy}=14

\frac{x^2}{xy}+\frac{y^2}{xy}=14

\frac{x}{y}+\frac{y}{x}=14

#Learn more:

https://brainly.in/question/15609518 Answered by thinking boy

Answered by mysticd
4

 2log\left(\frac{x-y}{2}\right) = log x + log y + log 3

 \implies log\left(\frac{x-y}{2}\right)^{2} = log (x \times y \times 3)

 \underline {\blue {By \: logarithmic \:laws :}}

 \pink { i) n log a = log \:a^{n} }

 \pink { ii)  log m + log n = log \:(m\times n) }

 \implies \left(\frac{x-y}{2}\right)^{2} = 3xy

 \implies \frac{(x-y)^{2} }{4} = 3xy

 \implies (x-y)^{2} = 12xy

 \implies x^{2} + y^{2} - 2xy = 12xy

 \implies x^{2} + y^{2}  = 12xy + 2xy

 \implies x^{2} + y^{2}  = 14xy

/* On Dividing each term by xy ,we get */

 \implies \frac{x^{2}}{xy} + \frac{y^{2}}{xy} = \frac{14xy}{xy}

 \implies \frac{x}{y} + \frac{y}{x} = 14

Therefore.,

 \red { Value \:of \: \frac{x}{y} + \frac{y}{x}} \green { = 14 }

•••♪

Similar questions