Math, asked by ammu5273, 10 months ago

If 2log(x-y/2)=logx+logy+log3. Then find the value of x/y+y/x=?​

Answers

Answered by ThinkingBoy
39

2log\frac{x-y}{2} = logx+logy+log3

log[\frac{x-y}{2}]^2 = log[3xy]

[\frac{x-y}{2}]^2 = 3xy

(x-y)^2 = 12xy

x^2+y^2-2xy = 12xy

x^2+y^2 = 14xy

\frac{x^2+y^2}{xy}  = 14

\frac{x}{y} +\frac{y}{x} =14

HOPE IT HELPS!!

Answered by Anonymous
23

Solution :-

2log( \dfrac{x - y}{2} ) = logx + logy + log3

 \implies 2log( \dfrac{x - y}{2} ) = log3xy

[ Because log a + log b = log ab ]

 \implies log \bigg( \dfrac{x - y}{2}  \bigg)^{2}  = log3xy

[ Because m. log a = log a^m ]

Eliminating log on both sides

 \implies \bigg( \dfrac{x - y}{2}  \bigg)^{2}  = 3xy

 \implies \dfrac{(x - y)^{2} }{2^{2} }    = 3xy

 \implies \dfrac{ {x}^{2} +  {y}^{2}  - 2xy  }{4}    = 3xy

[ Because (x - y) ² = x² + y² - 2xy ]

⇒ x² + y² - 2xy = 3xy * 4

⇒ x² + y² - 2xy = 12xy

⇒ x² + y² = 12xy + 2xy

⇒ x² + y² = 14xy

 \implies \dfrac{ {x}^{2} +  {y}^{2} }{xy}    = 14

 \implies \dfrac{ {x}^{2}}{xy}    +  \dfrac{ {y}^{2} }{xy}  = 14

 \implies \dfrac{x}{y}    +  \dfrac{y}{x}  = 14

Therefore the value of x/y + y/x is 14.

Similar questions