Math, asked by Juhishrita96, 1 year ago

If 2log(x+y)=3 log 3+log x +logy then show that x/y+y/x=25

Answers

Answered by Swarup1998
21

Proof :

∴ 2 log (x + y) = 3 log 3 + log x + log y

⇒ log (x + y)² = log 3³ + log x + log y

   [ ∵ a log b = log bᵃ ]

⇒ log (x + y)² = log 27 + log x + log y

    [ ∵ 3³ = 3 * 3 * 3 = 27 ]

⇒ log (x + y)² = log (27 * x * y)

    [ ∵ log a + log b + ... = log (ab...) ]

⇒ (x + y)² = 27xy

⇒ x² + 2xy + y² = 27xy

    [ using the algebraic identity

    (a + b)² = a² + 2ab +b² ]

⇒ x² + y² = 27xy - 2xy

⇒ x² + y² = 25xy

⇒ (x² + y²)/(xy) = 25

x/y + y/x = 25

Thus, proved.


RealPoet: Superb Answer ! Please Inbox me @Swarup Sir I have send you a question Please Solve !
Answered by Keerti26
1

Here is the answer:

∴ 2 log (x + y) = 3 log 3 + log x + log y

⇒ log (x + y)² = log 3³ + log x + log y

⇒ log (x + y)² = log 27 + log x + log y

⇒ log (x + y)² = log (27 * x * y)

⇒ (x + y)² = 27xy

⇒ x² + 2xy + y² = 27xy

   [ using the algebraic identity

   (a + b)² = a² + 2ab +b² ]

⇒ x² + y² = 27xy - 2xy

⇒ x² + y² = 25xy

⇒ (x² + y²)/(xy) = 25

⇒ x/y + y/x = 25

Thus, proved.

Similar questions