Math, asked by ssabunor, 11 months ago

if 2log(x-y)=logx +logy, prove that 2log(x+y)= log5+logx +logy

Answers

Answered by MaheswariS
1

\textbf{Given:}

2\,log(x-y)=log\,x+log\,y

\textbf{To find:}

2\,log(x+y)=log\,5+log\,x+log\,y

\textbf{Solution:}

\textbf{Formula used:}

\textbf{Product rule:}

\boxed{\bf\,log_a(MN)=log_aM+log_aN}

\textbf{Power rule:}

\boxed{\bf\,log_aM^n=n\;log_aM}

\text{Consider,}

2\,log(x-y)=log\,x+log\,y

\text{Using power and product rule, we get}

log(x-y)^2=log\,xy

\implies\,(x-y)^2=xy

\text{Adding 4xy on both sides we get}

(x-y)^2+4xy=xy+4xy

x^2+y^2-2xy+4xy=5xy

x^2+y^2+2xy=5xy

(x+y)^2=5xy

\text{Taking logarithm on both sides, we get}

log(x+y)^2=log(5xy)

\text{Using power rule on left side and product rule on right side, we get}

2\,log(x+y)=log\,5+log\,xy

\implies\bf\,2\,log(x+y)=log\,5+log\,x+log\,y

Find more:

x62 + y^2= 25xy, then prove that 2 log(x+y)=3log3+logx+logy

https://brainly.in/question/477579

Similar questions