Math, asked by AdyashaS, 4 days ago

.If 2m - 5 = 5( 2m + 3) then m is?​

Answers

Answered by masura8080
2
  • We have to evaluate the above expression by using the given data.

              Given data:- 2m-5=5(2m+3).

              To find:- Value of the expression.

              Solution:-

  • Here we will use the transposition method.
  • Transposition is one of the linear equations.
  • To solve the transposition method we will Identify the variables and constants.
  • Then we Simplify the equation in LHS and RHS.
  • Now Simplify the equation using arithmetic operations.

        By using the transposition method.

        we get,

                  2m-5=5(2m+3)\\=>2m-5=10m+15\\=>2m=10m+15+5\\=>2m=10m+20\\=>2m-10m=20\\=>-8m=20\\=>m=\frac{20}{-8} \\=>m=-\frac{5}{2}\\=>m=-2.5.

      Hence we will get the value m=-2.5 or m=-\frac{5}{2} .

Answered by mahakulkarpooja615
0

Answer:

 The value of m is -\frac{5}{2}.        

Step-by-step explanation:

Given : 2m-5=5(2m+3)

To find : The value of m.

Solution :

  • The given equation is, 2m-5=5(2m+3)
  • We have to find the value of m.
  • While solving any algebraic equation, we should follow BODMAS rule.
  • It states that while solving any algebraic equation, first solve B-Brackets, O-Order, D-Division, M-Multiplication, A-Addition and S-Subtraction.
  • The given equation is,

       2m-5=5(2m+3)

  • First, solve the bracket, we get

        2m-5=10m+15

  • Transpose the terms with variable at one side and constant terms at another side, we get    

        ∴ 2m-10m=15+5

               ∴  -8m=20

               ∴  m=\frac{20}{-8}

  • Reducing the fraction, we get

                   ∴ m=-\frac{5}{2}

  • ∴  The value of m is -\frac{5}{2}.        
Similar questions