If 2sec theta+3tan theta=7,then the
value of 2tan theta+3sec theta =?
Answers
Solution :
Here I am using A instead of theta.
2secA + 3tanA = 7 --( 1 ) given
Do the square both sides of
the equation , we get
(2secA+3tanA)² = 7²
=> 4sec² + 9tan²A+12secAtanA=49
=> 4(1+tan²A)+9(sec²A-1)
+12secAtanA = 49
[ By trigonometric identity ,
Sec²A - tan² A = 1 ]
=> 4+4tan²A+9sec²A-9
+ 12secAtanA = 49
=> 4tan²A+9sec²A+12tanAsecA
= 49 + 9 - 4
=> (2tanA)² +(3secA)²
+ 2×2tanA× 3secA = 54
=> ( 2tanA + 3secA )² = 54
=>2tanA + 3secA = ± √54
=> 2tanA + 3secA = ± 3√6
••••
Thank you for asking this question. Here is your answer:
First of all we will solve this:
2 sec theta + 3 tan theta will be equal to 7
2(1/cos theta)+3(sin theta/ cos theta) equal to 7
(2 + 3 sin theta)/cos theta equal to 7
2 + 3 sin theta will be equal to 7 cos theta
cos theta will be equal to (2 + 3 sin theta)/7
If there is any confusion please leave a comment below