If 2sin^2 θ+ 3sinθ = 0, then permissible values of cosθ are ...
Answers
Answered by
0
Answer:
2sin²θ + 3sinθ = 0
∴ sinθ (2sinθ + 3) = 0
∴ sinθ = 0 or sinθ = -3/2
Since, - 1 sinθ ≤ 1,
sinθ = 0
∴√1 - cos²θ = 0 [ ∵sin²θ = 1 - cos²θ ]
∴ 1 - cos²θ = 0
∴ cos²θ = 1
∴cosθ ± 1 [ ∵1 ≤ cosθ ≤ 1 ]
Similar questions