if 2sin^=2-cos^find sin^
Answers
Answered by
1
hola!
Given: 2sinϴ = 2 - cosϴ
4sin²ϴ = 4 - 4cosϴ + cos²ϴ
4 - 4cos²ϴ = 4 - 4 cosϴ + cos²ϴ ---[ as sin²ϴ = 1 - cos²ϴ ]
Adding 4cos² - 4 to both sides of the equation:-
0 = 5cos²ϴ - 4cosϴ
→ after its factorisation:-
cosϴ € {0, 0.8}
cos²ϴ € {0, 0.64}
n'
sin²ϴ € {1, 0.36}
Thus, sinϴ € {-1, 1, -0.6, 0.6}
hope it helps! :)
Given: 2sinϴ = 2 - cosϴ
4sin²ϴ = 4 - 4cosϴ + cos²ϴ
4 - 4cos²ϴ = 4 - 4 cosϴ + cos²ϴ ---[ as sin²ϴ = 1 - cos²ϴ ]
Adding 4cos² - 4 to both sides of the equation:-
0 = 5cos²ϴ - 4cosϴ
→ after its factorisation:-
cosϴ € {0, 0.8}
cos²ϴ € {0, 0.64}
n'
sin²ϴ € {1, 0.36}
Thus, sinϴ € {-1, 1, -0.6, 0.6}
hope it helps! :)
Similar questions