if 2sin^2 teta-cols^2 teta equal to 2 then find the value of teta
Answers
Answered by
1
_______________________________
From the question,
2 sin²Θ - cos²Θ = 2
2 sin²Θ - 2 = cos²Θ
From the Identity ⇒ sin²Θ + cos²Θ = 1
2(sin²Θ - 1) = cos²Θ
2(- cos²Θ) = cos²Θ
- 2 cos²Θ = cos²Θ
3 cos²Θ = 0
cos²Θ = 0
From the Trigonometric table cos 90° = 0 ⇒ cos² 90° = 0
Then, cos²Θ = cos² 90°
Cancelling cos²Θ on both sides,
Θ = 90°
________________________________
Similar questions