Math, asked by RenuSharma12, 1 day ago

If (2sin theta + 3cos theta) = 2, find value of :
(3sin theta - 2cos theta)
Ch - Introduction To Trigonometry
Class 10th ​

Answers

Answered by Anonymous
33

Answer :-

3, -3 .

Given:-

 \:  \:  \:  \:  \bf \: 2sin \theta + 3cos \theta = 2

To find :-

 \:  \:  \:  \:  \:  \bf \:  3sin \theta - 2cos \theta

Solution :-

Let's consider the value of 3sinθ-2cosθ= k

and,

We have the equation, 2sinθ+3cosθ=2 we shall do squaring on both sides.

 \:  \dashrightarrow \bf \:( 2sin \theta + 3cos \theta) {}^{2}  =( 2) {}^{2}

Expanding through (a+b)² = a² + 2ab + b²

 \:  \dashrightarrow \bf \: 4sin {}^{2}  \theta + 9cos {}^{2}  \theta + 12sin \theta \: cos \theta =4

 \:  \dashrightarrow \bf \:  \red{ 12sin \theta \: cos \theta  = 4 - 4sin {}^{2}  \theta - 9cos {}^{2}  \theta}

Now,

 \:  \:  \:  \:  \:  \bf \:  3sin \theta - 2cos \theta = k

We shall do squaring on both sides for this equation also

 \dashrightarrow(  \bf \:  3sin \theta - 2cos \theta ) {}^{2} =( k) {}^{2}

 \dashrightarrow  \bf \:  9sin {}^{2}  \theta  + 4cos {}^{2}  \theta   - 12sin \theta \: cos \theta = k{}^{2}

We know ,

12sinθcosθ = 4-4sin²θ-9cos²θ

Substituting it

 \dashrightarrow  \bf \:  9sin {}^{2}  \theta  + 4cos {}^{2}  \theta   - (4 - 4sin {}^{2}  \theta - 9cos {}^{2} \theta = k{}^{2}

 \dashrightarrow  \bf \:  9sin {}^{2}  \theta  + 4cos {}^{2}  \theta   - 4  +  4sin {}^{2}  \theta  +  9cos {}^{2} \theta = k{}^{2}

Regrouping same terms together.

 \dashrightarrow  \bf \:  9sin {}^{2}  \theta  +4sin {}^{2}  \theta   +  4cos {}^{2}  \theta    +  9cos {}^{2} \theta - 4 = k{}^{2}

 \dashrightarrow  \bf \:  13sin {}^{2}  \theta     +  13cos {}^{2}  \theta   - 4 = k{}^{2}

 \dashrightarrow  \bf \:  13(sin {}^{2}  \theta     +  cos {}^{2}  \theta )  - 4 = k{}^{2}

 \dashrightarrow  \bf \:  13( \red {1} )  - 4 = k{}^{2}

 \dashrightarrow  \bf \:  9= k{}^{2}

 \dashrightarrow  \bf \:   \pm \sqrt{9} = k{}

 \dashrightarrow  \bf \:   k{} =  \pm3

We know that, 3sinθ-2cosθ= k

So,

3sinθ-2cosθ = 3, -3

Answered by Anonymous
54

EXPLANATION:

.

2 \sin(\theta )  + 3 \cos(\theta )  = 2 \:  \:  \: ...(given) \\

 \sf [Squaring \:  Both \:  Sides]

\implies {(2 \sin(\theta )  + 3 \cos(\theta ) )}^{2}  =  {2}^{2}   \\

 \sf [(x + y) ^{2} =  {x}^{2} + 2xy +  {y}^{2}   ]

\implies {(2 \sin(\theta ))^{2}   + 2(2 \sin(\theta )).(3 \cos(\theta ))    + (3 \cos(\theta ) )}^{2}  =  4   \\

\implies 4 \sin^{2} (\theta )   + 12 \sin(\theta ). \cos(\theta )    + 9 \cos ^{2} (\theta )  =  4   \\

\implies 4 \sin^{2} (\theta )   + 4\cos ^{2} (\theta )  +   + 5\cos ^{2} (\theta ) + 12 \sin(\theta ). \cos(\theta )    =  4   \\

\implies 4( \sin^{2} (\theta )   + \cos ^{2} (\theta )  )+ 5\cos ^{2} (\theta ) + 12 \sin(\theta ). \cos(\theta )    =  4   \\

 [\sin^{2} (\theta )   + \cos ^{2} (\theta )=  1   ]

\implies 4( 1)+ 5\cos ^{2} (\theta ) + 12 \sin(\theta ). \cos(\theta )    =  4   \\

\implies  \cancel{4} + 5\cos ^{2} (\theta ) + 12 \sin(\theta ). \cos(\theta )    =  \cancel{4}   \\

\implies  5\cos ^{2} (\theta ) =  - 12 \sin(\theta ). \cos(\theta )    \:  \:  \:... (1) \\

3 \sin(\theta )  - 2 \cos(\theta)  = 3 \sin(\theta )  - 2 \cos(\theta)  \\

 \sf [Squaring \:  Both \:  Sides]

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  \\

 \sf [(x  - y) ^{2} =  {x}^{2}  - 2xy +  {y}^{2}   ]

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =   {(3 \sin(\theta ))}^{2}  -  2(3 \sin(\theta ))(2 \cos(\theta)) + {(2 \cos(\theta)   )}^{2}  \\

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =   {9\sin^{2} (\theta )} -  12 \sin(\theta ). \cos(\theta) + {4\cos^{2} (\theta)}   \\

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =   {9\sin^{2} (\theta )} + 5\cos^{2} (\theta) + {4\cos^{2} (\theta)}  \:  \:  \: ...(By  \: Eq \:  [1]) \\

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =   9\sin^{2} (\theta ) + 9\cos^{2} (\theta)   \\

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =   9(\sin^{2} (\theta ) + \cos^{2} (\theta) )  \\

 [\sin^{2} (\theta )   + \cos ^{2} (\theta )=  1   ]

 \implies  {(3 \sin(\theta )  - 2 \cos(\theta) )}^{2}  =   9(1 )  \\

 \implies  {3 \sin(\theta )  - 2 \cos(\theta) }  =    \sqrt{9} \\

\implies   \red{\boxed {{3 \sin(\theta )  - 2 \cos(\theta) } = ± 3 }}\\  \\

Similar questions