If (2sin theta + 3cos theta =2, prove that (3 sin theta-2 cos theta)=+-3
Answers
Answered by
25
Answer:
3sin∅ - 2cos∅ = ±3
Step-by-step explanation:
Given 2sin∅ + 3cos∅ = 2,
To prove that 3sin∅ - 2cos∅ = ±3.
Let us consider value of 3sin∅ - 2cos∅ to be 'x'
Now consider ( 2sin∅ + 3cos∅)² + (3sin∅ - 2cos∅)²
=(4sin²∅ + 9cos²∅ + 12sin∅cos∅) + (9sin²∅ + 4cos²∅ - 12sin∅cos∅)
=13sin²∅ + 13cos²∅
=13(sin²∅ + cos²∅),
We know from trignometric identities, that
sin²∅ + cos²∅ = 1
=> x² + 2² = 13
=>x² = 9
=> x = ±3.
Hence 3sin∅ - 2cos∅ = ±3.
Answered by
40
ANSWER:-
IN THE ATTACHMENT
Attachments:
Similar questions