Math, asked by Sundararaj9977, 1 year ago

If 2sin theta=sec theta, then the value of sin^4 theta+cos^4 theta

Answers

Answered by drashti5
6

 --> 2 \sin\alpha   =  \sec \alpha  \\  \therefore 2 \sin\alpha    =  \frac{1}{ \cos\alpha  }  \\  \therefore \: 2\sin\alpha  \cos\alpha   = 1 \\  \therefore \:  \sin2 \alpha = 1 \\  \therefore \: 2 \alpha  =  \frac{\pi}{2}  \\  \therefore \:  \alpha  =  \frac{\pi}{4} \:  \:  \:  \\  \\ now \:  \\   \\  \sin^{4}  \alpha   +  \cos^{4}  \alpha   \\ \\   =    { \sin }^{4}  \frac{\pi}{4}  +  { \cos }^{4}  \frac{\pi}{4} \\   \\  =  { (\frac{1}{ \sqrt{2} }) }^{4}  + ( { \frac{1}{ \sqrt{2} } )}^{4}  \\ \\   =  \frac{1}{4}  +  \frac{1}{4}  \\  \\  =  \frac{1}{2}
hope this helps..........
Similar questions