if 2sin x-1=0 then show that sec x+tanx=√3
Answers
Answered by
2
Given :
2sinx - 1 = 0
To prove :
secx + tanx = √3
Proof :
We have ,
=> 2sinx - 1 = 0
=> 2sinx = 1
=> sinx = 1/2
=> sinx = sin30°
=> x = 30°
Thus ,
=> secx + tanx = sec30° + tan30°
=> secx + tanx = 2/√3 + 1/√3
=> secx + tanx = (2 + 1)/√3
=> secx + tanx = 3/√3
=> secx + tanx = √3
Hence proved .
Answered by
1
Given
2secx+tanx=1
⟹cosx2+cosxsinx=1
(secx=cosx1,tanx=cosxsinx)
⟹2+sinx=cosx
⟹cosx−sinx=2
⟹21cosx−21sinx=1
⟹cos4πcosx−sin4πsinx=cos0
⟹cos(4π+x)=cos0
(cos(A+B)=cosAcosB−sinAsinB)
⟹cos(4π+x)=cos0
⟹4π+x=2nπ
(cosk=0⟹k=2nπ)
⟹x=2nπ−4π
Similar questions