If 2sin²β – cos²β = 2, then β is
Answers
Answer:
beta= 90°
Step-by-step explanation:
sin^2 beta + cos^2 beta= 1 ...(i)
2sin^2beta - cos^2beta= 2
or 2sin^2 beta= 2+ cos^2 beta = 2*1 + cos^2 beta
or 2sin^2 beta=2(sin^2 beta + cos^2 beta) +. cos^2 beta
or 2sin^2 beta= 2sin^2 beta + 3cos^2 beta
or 3cos^2 beta = 0
or √3 cos beta = 0
or cos beta= 0
according to trigonometric tables, cos 0= 90°
SOLUTION
TO DETERMINE
If 2sin²β – cos²β = 2 then β is
EVALUATION
Here it is given that
2sin²β – cos²β = 2
Now
2sin²β – cos²β = 2
⇒ 2sin²β – ( 1 - sin²β ) = 2
⇒ 2sin²β - 1 + sin²β = 2
⇒ 3sin²β - 1 = 2
⇒ 3sin²β = 3
⇒ sin²β = 1
⇒ sinβ = 1
⇒ β = 90°
FINAL ANSWER
If 2sin²β – cos²β = 2 then β is 90°
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
If cosθ+secθ=√2,find the value of cos²θ+sec²θ
https://brainly.in/question/25478419
2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to
https://brainly.in/question/17024513
3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2
https://brainly.in/question/19793971