Math, asked by sreejasarmah100, 2 months ago

If 2sinA = 1 then find secA - tan A​

Answers

Answered by srushthibudni
5

Answer:

answer is a 1/√3 it is a write ans and I have photo send it's

Attachments:
Answered by Anonymous
182

Given :-

  • \textsf{\;\;\;2sinA = 1}

To Find :-

  • Value of \mathsf{ secA - tanA}

Solution :-

We are given :-

\textsf\pink{{ \;\;\;2sinA = 1}}

\mathsf{\:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies sinA = \dfrac{1}{2}}\\

\textsf\green{{Now, Consider :- secA - tanA}}\\

  • \;\;\textsf{We know that : \red{\boxed{\mathsf{sec\theta = \dfrac{1}{cos\theta}}}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \dfrac{1}{cosA} - \dfrac{sinA}{cosA}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \dfrac{1 - sinA}{cosA}}\\

  • \;\;\textsf{Using \: Identity  :- \red{\boxed{\mathsf{sin^2\theta + cos^2\theta = 1}}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies cos^2\theta = 1 - sin^2\theta}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies cos\theta = \pm\sqrt{1 - sin^2\theta}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \pm\dfrac{1 - sinA}{\sqrt{1 - sin^2A}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \pm\dfrac{1 - \dfrac{1}{2}}{\sqrt{1 - \bigg(\dfrac{1}{2}\bigg)^2}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\:;\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\sqrt{1 - \dfrac{1}{4}}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{4 - 1}{4}}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{3}{4}}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\::\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}}\\

\mathsf{ \:  \:  \:  \:   \:  \:  \:  \:  \: \:\pink{\::\implies secA - tanA = \pm\dfrac{1}{\sqrt{3}}}}\\

Similar questions