Math, asked by obitostein2211, 9 months ago

if 2sinA= 2+ cosA, find sinA

Answers

Answered by umiko28
4

Answer:

\huge\underline{ \underline{ \red{your \: \: answer}}}

Step-by-step explanation:

 \sf\red{2sina = 2 + cosa} \\  \sf\red{ =  >  {(2sin)a}^{2} =  {(2 + cos)a}^{2}  } \\  \sf\red{ =  >  {4sin}^{2}a = 4 +  {cos}a^{2} + 4cosa  } \\  \sf\red{ =  >  {4sina}^{2} - 4  -   {cos}^{2}a - 4cosa = 0  } \\  \sf\red{ =  > 4(1 -  {cos}^{2}a )  -  4 -  {cos}^{2}a - 4cosa  =  0} \\  \sf\red{ =  > 4 -  {4cos}^{2}a - 4 -  {cos}^{2}a  - 4cosa  = 0} \\  \sf\red{ =  > - 5 {cos}^{2}a - 4cosa = 0  } \\  \sf\red{ =  >cosa ( - 5cosa +4 ) = 0} \\  \sf\red{ cosa = 0 \:  \:  \:  - 5cosa + 4 = 0} \\  \sf\red{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  > cosa =  \frac{ - 4}{ - 5}  =  \frac{4}{5} } \\  \sf\blue{we \: know \: that \:  {sin}^{2}a +  {cos}^{2}a = 1  } \\  \sf\pink{ {sin}^{2}a + 0 = 1 =  > sina = 1 } \\  \sf\purple{ {sin}^{2}a +  { (\frac{4}{5}) }^{2}  = 1  } \\  \sf\purple{ {sin}^{2} a +  \frac{16}{25} = 1  } \\  \sf\purple{  {sin}^{2}a = 1 -  \frac{16}{25}  } \\  \sf\purple{ {sin}^{2}a =  \frac{9}{25}  } \\  \sf\purple{ sina =  \sqrt{ \frac{9}{25} }  } \\  \sf\purple{sina =  \frac{3}{5} } \\ \large\boxed{ \fcolorbox{red}{blue}{hope \: it \: help \: you}}

Answered by Anonymous
1

Answer:

if 2sinA=2+cosA,

Let SinA = x.

So cosA = (1-x2)1/2.

Hence the equation,

2x = 2 - (1-x2)1/2. Or (1-x2)1/2

= 2 - 2xSquaring,

we have,

4+4x2-8x

= 1-x2.or 5x2 - 8x + 3

= 0. (5x-3)(x-1)

= 0.So x

= 1 or x = 3/5 So SinA = 1 or 3/5.

Similar questions