Math, asked by ravinderchauhan300, 8 months ago

if 2sintheta=x+1/x, prove that sin 3theta +1/2(x3+1/x3)​

Answers

Answered by saounksh
5

ᴀɴsᴡᴇʀ

ɢɪᴠᴇɴ

  •  2sin(\theta) = x + \frac{1}{x}

ᴛᴏ ᴘʀᴏᴠᴇ

  • sin(3\theta) + \frac{1}{2}(x^3 + \frac{1}{x^3}) = 0

ᴘʀᴏᴏғ

\:\:\:\:sin(3\theta)

 = 3sin(\theta) -4sin^3(\theta)

 = \frac{3}{2}(x + \frac{1}{x}) -4[\frac{1}{2}(x + \frac{1}{x})]^3

 = \frac{3}{2}(x + \frac{1}{x}) -\frac{4}{8}(x + \frac{1}{x})^3

 = \frac{3}{2}(x + \frac{1}{x})

\:\:\:\: -\frac{1}{2}[x^3 + \frac{1}{x^3} + 3x.\frac{1}{x}(x + \frac{1}{x})]

 = \frac{3}{2}(x + \frac{1}{x})-\frac{1}{2}(x^3 + \frac{1}{x^3}) -\frac{3}{2}(x + \frac{1}{x})

\implies sin(3\theta) = -\frac{1}{2}(x^3 + \frac{1}{x^3})

\implies sin(3\theta) + \frac{1}{2}(x^3 + \frac{1}{x^3}) = 0

Hence Proved

Similar questions