If 2tan = 2 tan, prove that tan( − ) = sin2 5−cos 2
Answers
Answered by
32
tan(α−β)
=1+tanαtanβtanα−tanβ
=1+23tan2β23tanβ−tanβ×cos2βcos2β
=4cos2β+6sin2βsin2β
=4+(1−cos2β)sin2β
=5−cos2βsin2β
tan(α−β)
=
1+tanαtanβ
tanα−tanβ
= 1+ 23 tan 2 β23 tanβ−tanβ
× cos 2 βcos 2 β
= 4cos 2 β+6sin 2 βsin2β
= 4+(1−cos2β)
sin2β
= 5−cos2
βsin2β
✪============♡============✿
Answered by
4
tan(α−β)= 1+tanαtanβtanα−tanβ
= 1+23tan2β23tanβ−tanβ×cos2βcos2β
= 4cos2β+6sin2βsin2β
= 4+(1−cos2β)sin2β
= 5−cos2βsin2β
tan(α−β) = 1+tanαtanβ
1+tanαtanβ tanα−tanβ
= 1+ 23 tan 2 β23 tanβ−tanβ × cos 2 βcos 2 β
= 4+(1−cos2β) sin2β
= 5−cos2
βsin2β
❥ Mɪᴢᴢ_Iɴɴᴏᴄᴇɴᴛ❦࿐
Similar questions