If 2tanθ=32tanθ=3 , thensin2θ+cos2θ=
Answers
Answered by
0
Given : 2tanθ=3
To Find : sin2θ+cos2θ
Solution:
2tanθ=3
=> tanθ = 3/2
=> Sec²θ = 1 + tan²θ
=> Sec²θ = 1 + (3/2)²
=> Sec²θ = 13/4
=> cos²θ = 4/13 => cosθ = ± 2/√13
Sin²θ + cos²θ = 1
=> Sin²θ + 4/13 = 1
=> Sin²θ = 9/13 => sinθ = ± 3/√13
sin2θ+cos2θ
= 2sinθcosθ + cos²θ - Sin²θ
= 2( ± 3/√13)(± 2/√13) + 4/13 - 9/13
= 12/13 - 5/13
= 7/13
sin2θ+cos2θ = 7/13
Learn More:
If sinθ + cosθ = √2cosθ, (θ ≠ 90°) then the value of tanθ is a) √2 ...
https://brainly.in/question/13094229
Similar questions