Math, asked by divyanshrawat2005, 5 months ago

If √2tan2θ = √6 and 0⁰ ≤ 2θ ≤ 90⁰, find the value of sin θ + √3cos θ – 2 tan2 θ.

Answers

Answered by sohamswarup2008
8

Step-by-step explanation:

Hey mate,

We have,

We have,3

We have,3

We have,3 sinθ−cosθ=0

We have,3 sinθ−cosθ=03

We have,3 sinθ−cosθ=03

We have,3 sinθ−cosθ=03 sinθ=cosθ

We have,3 sinθ−cosθ=03 sinθ=cosθ3

We have,3 sinθ−cosθ=03 sinθ=cosθ3

We have,3 sinθ−cosθ=03 sinθ=cosθ3 =

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθ

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθ

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ=

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π θ=nπ+

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π θ=nπ+ 6

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π θ=nπ+ 6π

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π θ=nπ+ 6π

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π θ=nπ+ 6π where n ε Z

We have,3 sinθ−cosθ=03 sinθ=cosθ3 = sinθcosθ 3 =cotθtanθ= 3 1 tanθ=tan 6π θ=nπ+ 6π where n ε ZHence, this is the answer.


Anonymous: enough...
Anonymous: thanx for thanks
sohamswarup2008: ok thank you
sohamswarup2008: also
Anonymous: welcome
Similar questions
Math, 11 months ago