If 2tanA=3tanB and tan(A-B) =sin2B÷ (k-cos2B) Then find the value of k?
Answers
Answered by
1
hey frnd here ur best answer i hope its help full to u
an(A-B) = (tanA - tanB)/(1 + tanAtanB)
= (3/2 tanB - tanB)/(1 + 3/2 tanBtanB) ... given 2tanA = 3tanB
= tanB(3/2 - 1)/(1 + 3/2 tan2B)
= tanB (1/2)/(sec2B - tan2B + 3/2 tan2B) ..
since 1 + tan2B = sec2B
= tanB (1/2)/(sec2B + 1/2 tan2B)
= sinB cosB/(2 + sin2B)
= 2sinB cosB/(4 + 2sin2B)
= sin2B /(4 + 1 - cos2B)
.... 2sin2B = 1 - cos2B
= sin2B /(k- cos2B)
ans..
thnk you
an(A-B) = (tanA - tanB)/(1 + tanAtanB)
= (3/2 tanB - tanB)/(1 + 3/2 tanBtanB) ... given 2tanA = 3tanB
= tanB(3/2 - 1)/(1 + 3/2 tan2B)
= tanB (1/2)/(sec2B - tan2B + 3/2 tan2B) ..
since 1 + tan2B = sec2B
= tanB (1/2)/(sec2B + 1/2 tan2B)
= sinB cosB/(2 + sin2B)
= 2sinB cosB/(4 + 2sin2B)
= sin2B /(4 + 1 - cos2B)
.... 2sin2B = 1 - cos2B
= sin2B /(k- cos2B)
ans..
thnk you
Similar questions