if 2tana=tanb, prove that cos2a = (3+5cos2b)/(5+3cos2b).
Answers
Answered by
1
Answer:
Given 2tanA=3tanB
⇒tanA=32tanB
Now
LHS=cos2A
=1−tan2A1+tan2A
=1−94tan2B1+94tan2B
=1−94⋅sin2Bcos2B1+94⋅sin2Bcos2B
=4cos2B−9sin2B4cos2B+9sin2B
=8cos2B−18sin2B8cos2B+18sin2B
=4
Similar questions