Math, asked by kuniyaldeepa27, 1 month ago

If 2to the power x =3to the power y. Prove that (x+3y) z=xy.​

Answers

Answered by nilamamahajan998
0

Answer:

2^x  = 3^y  = 6^z

2^x = 6^z

Raise both sides to power y.

   2^{xy} = 6^{zy}    --- (1)

3^y = 6^z

Raise both sides to power x

  3^{xy} = 6^{xz}    --- (2)

multiply (1) and (2)

  =>  (2 * 3)^{x y}  =  6^{z y + x z} = 6^{z(x+y)}

  =>  6^{x y} = 6^{z(x+y)}

  =>  x y =  z(x+y)

  =>  z = (x y) / (x + y)

Answered by pulakmath007
1

SOLUTION

GIVEN

  \displaystyle\sf{ {2}^{x} =  {3}^{y} =  {24}^{z}   }

TO PROVE

 \sf \: x(x +3y)z = xy

EVALUATION

Here it is given that

 \displaystyle\sf{ {2}^{x} =  {3}^{y} =  {24}^{z}   }

Let us consider

 \displaystyle\sf{ {2}^{x} =  {3}^{y} =  {24}^{z}   } = k

Then we have

 \displaystyle\sf{  {k}^{ \frac{1}{x} } = 2 }

 \displaystyle\sf{  {k}^{ \frac{1}{y} } = 3 }

 \displaystyle\sf{  {k}^{ \frac{1}{z} } = 24 }

Now we have

 \sf \:  {2}^{3}  \times 3 = 24

 \displaystyle\sf{ \implies \:   {k}^{ \frac{3}{x} } \times  {k}^{ \frac{1}{y} }={k}^{ \frac{1}{z} }  }

 \displaystyle\sf{ \implies \:   {k}^{ \frac{3}{x}  +  \frac{1}{y} } ={k}^{ \frac{1}{z} }  }

 \displaystyle\sf{ \implies \:   \frac{3}{x}  +  \frac{1}{y}   =  \frac{1}{z} }

 \displaystyle\sf{ \implies \:   (x + 3y)z = xy }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. solve: 49³-30³+(....)³= 3 × 49 × 30 × 19

https://brainly.in/question/17577612

2. If x+1/x=3 then, x^7+1/x^7=

https://brainly.in/question/23295932

Similar questions