Math, asked by sapnak8054, 4 months ago

If 2x+1,x square +x+1and 3x square-3x+3 are in A.P,then the value (s) of x:

Answers

Answered by snehitha2
9

Answer :

The value of x is 1 (or) 2

Step-by-step explanation :

Arithmetic Progression :

  • It is the sequence of numbers such that the difference between any two successive numbers is constant.
  • General form of AP,

        a , a+d , a+2d , a+3d , ..........

Given,

⇒ 2x + 1 , x² + x + 1 and 3x² - 3x + 3 are in A.P

Let

  • a₁ = 2x + 1
  • a₂ = x² + x + 1
  • a₃ = 3x² - 3x + 3

Since they are in A.P., the difference between the successive numbers is constant.        

       a₂ - a₁ = a₃ - a₂

 x² + x + 1 - (2x + 1) = 3x² - 3x + 3 - (x² + x + 1)

 x² + x + 1 - 2x - 1 = 3x² - 3x + 3 - x² - x - 1

 x² + x - 2x + 1 - 1 = 3x² - x² - 3x - x + 3 - 1

   x² - x = 2x² - 4x + 2

    2x² - x² + 2 = 4x - x

       x² + 2 = 3x

      x² - 3x + 2 = 0

    x² - x - 2x + 2 = 0

   x(x - 1) - 2(x - 1) = 0

    (x - 1) (x - 2) = 0

      x = 1 (or) 2

Therefore, the value of x is 1 (or) 2

Verification :

  • Put x = 1,

⇒ a₁ = 2x + 1

a₁ = 2(1) + 1

a₁ = 2 + 1

a₁ = 3

⇒ a₂ = x² + x + 1

a₂ = 1² + 1 + 1

a₂ = 1 + 1 + 1

a₂ = 3

⇒ a₃ = 3x² - 3x + 3

a₃ = 3(1)² - 3(1) + 3

a₃ = 3(1) - 3 + 3

a₃ = 3

the difference of a term and the preceding term is same

i.e., 3 - 3 = 0

So, they're in A.P.

  • Put x = 2,

⇒ a₁ = 2x + 1

a₁ = 2(2) + 1

a₁ = 4 + 1

a₁ = 5

⇒ a₂ = x² + x + 1

a₂ = 2² + 2 + 1

a₂ = 4 + 3

a₂ = 7

⇒ a₃ = 3x² - 3x + 3

a₃ = 3(2)² - 3(2) + 3

a₃ = 3(4) - 6 + 3

a₃ = 12 - 3

a₃ = 9

the difference of a term and the preceding term is same.

i.e., 9 - 7 = 7 - 5 = 2

So, they're in A.P.

Hence verified!

Similar questions