if (2x+3)(2x+a)=4x^2+8x+3 then the value of a is
Answers
Answer:
1
Step-by-step explanation:
●(2x+3) (2x+a) = 4x(square) + 8x + 3
●Multiplying the terms of L.H.S.
●2x(2x+a) + 3(2x+a)
●4x(square) + 2ax + 6x + 3a = 4x(square) +8x +3
●By transferring the terms of R.H.S. in L.H.S.
●4x(square) - 4x(square) + 6x-8x + 2ax + 3a =3
●2ax-2x+3a = 3
OR
2ax + 3a - 2x = 3
● Taking common in first two terms of L.H.S. (a)
a(2x+3)-2x = 3
● Transferring 2x in R.H.S.
a(2x+3) = 3+2x
● Transferring 2x+ 3 in R.H.S.
a= (3+2x)÷( 2x+3)
● We can write 3+2x as 2x+3
So,
a = (2x+3)÷(2x+3)
● a = 1. ANS.
I hope this will help you!
Answer:
a=1
Step-by-step explanation
(2x+3)(2x+a)=4x^2+8x+3
(2x)^2+(2x)(a)+(3)(2x)+(3)(a)=4x^2+8x+3
4x^2+2xa+6x+3a=4x^2+8x+3
from both the sides 4x^2 will be cut
therefore,2xa+6x+3a=8x+3
∴2xa+3a=8x-6x+3
∴2xa+3a=2x+3
take a common from 2xa+3a
⇒a(2x+3)=2x+3
∴a=2x+3/2x+3
∴a=1
Please mark as brainliest if found helpful