Math, asked by raj575979, 10 months ago

If 2x = 3+√7, find 4x2+1/x2​

Answers

Answered by rocky200216
11

2x = 3+7

=> x = (3+7)/2

4x²+1/x²

= 4{(3+7)/2}² + 1/{(3+7)/2}²

= 4{(16+67)/4} + 1/{(16+67)/4}

= (16+67) + 4/(16+67)

= (512+1927)/(16+67)

= {32(16+67)}/(16+67)

= 32 .

Hope it's helpful to you.

Answered by Anonymous
8

⇨GIVEN:-

 \tt ↠ \red{2x  =  3 +  \sqrt{7} }

⇨FIND:-

 \tt ↠ \blue{ {4x}^{2}  +  \frac{1}{ {x}^{2} } }

⇨SOLUTION:-

 \tt⤳ \green{2x = 3 +  \sqrt{7} }.....(i)

 \tt➾ \frac{1}{x}  =  \frac{2}{3 +  \sqrt{7} }  \\  \tt  \gray{❅ rationalise \: the \: denominator} \\  \tt  ➾ \frac{2}{3 +  \sqrt{7} }  \times  \frac{3 -  \sqrt{7} }{3 -  \sqrt{7} }  \\۞\tt  by \: using \: identity \: (a + b)(a - b) =  {a}^{2}  -  {b}^{2}   \: we \: have\\ \tt \frac{2(3  -   \sqrt{7} )}{ {3}^{2} - ( \sqrt{7} {)}^{2}   }   = \frac{2(3  -   \sqrt{7} )}{ 9 - 7  }  \\  \tt➾ \frac{ \cancel2(3  -  \sqrt{7} )}{ \cancel2}   \\  \tt ➾ \pink{ \frac{1}{x}  =  3 -  \sqrt{7}} .....(ii)

adding eq(i) and (ii) we have,

 \tt⪼2x +  \frac{1}{x}  = 3  \cancel{+  \sqrt{7} } + 3  \cancel{-  \sqrt{7} }

 \tt⪼2x +  \frac{1}{x}  = 3   + 3  \\  \tt⪼2x +  \frac{1}{x}  = 6

now, squaring both sides we have,

 \tt \implies {(2x +  \frac{1}{x}) }^{2}  =  {6}^{2}

 \tt ✼by \: using {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \: we \: have

 \tt \implies  {(2x)}^{2}  +  \frac{(1 {)}^{2} }{ {x}^{2} }  + 2 \times 2 \cancel x \times  \frac{1}{ \cancel x }  = 36

 \tt \implies  4 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 4 = 36

 \tt \implies  4 {x}^{2}  +  \frac{1}{ {x}^{2} }   = 36 - 4

 \tt \implies  4 {x}^{2}  +  \frac{1}{ {x}^{2} }   = 32

 \tt Hence,  \huge\boxed{ \bold{ 4 {x}^{2}  +  \frac{1}{ {x}^{2} } = 32}}

Similar questions