Math, asked by elizabethblessy, 1 year ago

if 2x=3+root 7, find the value of :4x square +1/x square​

Answers

Answered by harendrakumar4417
23

The value of 4x^{2} +\frac{1}{x^{2} } is \frac{256+96\sqrt{7} }{8+3\sqrt{7} }.

Step-by-step explanation:

Given, 2x = 3 + \sqrt{7}

Squaring both sides,

(2x)^{2} = (3+\sqrt{7} )^{2}

4x^{2} = 9 + 7 + 6\sqrt{7}     [(a+b)^{2} = a^{2} +b^{2} + 2ab]

4x^{2} = 16 + 6\sqrt{7} ................(i)

x^{2} = \frac{(16+6\sqrt{7}) }{4}...................(ii)

Now,

4x^{2} + \frac{1}{x^{2} } \\= (16+6\sqrt{7} ) + \frac{1}{\frac{(16+6\sqrt{7}) }{4}}                        [Using equation(i) & (ii)]

= (16 + 6\sqrt{7} ) +\frac{4}{(16+6\sqrt{7}) } \\= \frac{(16+6\sqrt{7})^{2} +4 }{16+6\sqrt{7}} \\= \frac{256 + 252 + 192\sqrt{7}+4 }{16+6\sqrt7} \\= \frac{512+192\sqrt{7} }{16+6\sqrt{7}} \\=\frac{256+96\sqrt{7}}{8+3\sqrt{7}} \\

Hence, the value of 4x^{2} +\frac{1}{x^{2} } is \frac{256+96\sqrt{7} }{8+3\sqrt{7} }.

Answered by manjubala39
3

Hope it helps you

Thanks for asking

Attachments:
Similar questions