Math, asked by laxmikumari0972, 11 hours ago

If (2x-3)the power of 2=xth power of 64,find the value of x

Answers

Answered by varadad25
2

Answer:

The value of x is

\displaystyle{\boxed{\red{\sf\:x\:=\:-\:\dfrac{3}{4}\:}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:2^{(\:2x\:-\:3\:)}\:=\:64^x}

We have to find the value of x.

Now,

\displaystyle{\sf\:2^{(\:2x\:-\:3\:)}\:=\:64^x}

\displaystyle{\implies\sf\:2^{(\:2x\:-\:3\:)}\:=\:(\:8^2\:)^x}

\displaystyle{\implies\sf\:2^{(\:2x\:-\:3\:)}\:=\:8^{2x}}

\displaystyle{\implies\sf\:2^{(\:2x\:-\:3\:)}\:=\:(\:2^3\:)^{2x}}

\displaystyle{\implies\sf\:2^{(\:2x\:-\:3\:)}\:=\:2^{3\:\times\:2x}}

\displaystyle{\implies\sf\:2^{(\:2x\:-\:3\:)}\:=\:2^{6x}}

Bases are equal, so by comparing the powers, we get,

\displaystyle{\implies\sf\:2x\:-\:3\:=\:6x}

\displaystyle{\implies\sf\:-\:3\:=\:6x\:-\:2x}

\displaystyle{\implies\sf\:4x\:=\:-\:3}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x\:=\:-\:\dfrac{3}{4}\:}}}}

Similar questions