Math, asked by metro7086, 3 months ago

If 2x + 3y = 10 and 2x + y = 15, find the value of (x + y).​

Answers

Answered by astha1917
0

Step-by-step explanation:

from the attachment above we got the values X and Y

that is :

  • x = 35/4
  • y = -5/2

according to the question,

x + y =  \frac{35}{4}  -  \frac{5}{2}

 x + y =  \frac{35 - 10}{4}

x + y =  \frac{25}{4}

Attachments:
Answered by brokendreams
0

Step-by-step explanation:

Given : Two linear equations 2x+3y=10  and  2x+y=15 .

To find : The value of (x+y).

  • Calculation for x and y

To find the (x+y) we have to find the values of x and y first. As we have linear equations

⇒  2x+3y=10               --(1)

⇒  2x+y=15                 --(2)

so we can find the x and y by substitution method.

Extract x from equation (1),

⇒  x=\frac{10-3y}{2}                   --(3)

Substitute this x in equation (2),

2x+y=15  

2(\frac{10-3y}{2})+y=15

10-3y+y=15

taking similar terms at one side,

-3y+y=15-10

-2y=5

y=\frac{-5}{2}

now put this y in equation (3)

⇒  x=\frac{10-3y}{2}    

        =\frac{10-3(\frac{-5}{2})}{2}

        =\frac{10+(\frac{15}{2})}{2}

taking L.C.M of 2 in numerator of  x.

         =\frac{(\frac{20+15}{2})}{2}

         =\frac{\frac{35}{2}}{2}

         =\frac{35}{4}

We get the values of x and y as

x=\frac{35}{4}    and  y=\frac{-5}{2}.

  • Calculation for (x+y)

We have ,

x=\frac{35}{4}    and  y=\frac{-5}{2}.

So the (x+y) is,

⇒  x+y=\frac{35}{4} +(\frac{-5}{2})

              =\frac{35}{4} -\frac{5}{2}

taking L.C.M as 4,

              =\frac{35-10}{4}

              =\frac{25}{4}

Hence we get the value of (x+y) =\frac{25}{4} .    

Similar questions