If 2x + 3y = 10, xy = 4, find 8x^3 + 27y^3
Attachments:
Answers
Answered by
0
Answer:
8x^3+27x^3
(2^3 .x^3)+(3^3.x^3)
2x^3+3x^3
=5x^3
Answered by
13
Given
⇒2x + 3y = 10
⇒xy = 4
To Find
⇒8x³ + 27³
Formula
⇒(a+b)³ = a³+b³+3ab(a+b)
Now Let
⇒2x = a and 3y = b
Put the value on formula
⇒(2x+3y)³ = (2x)³ + (3y)³ + 3×2x×3y(2x+3y)
⇒(10)³ = 8x³ + 27y³ + 18xy(10)
⇒100 = 8x³ + 27y³+ 18×4×10
⇒100 = 8x³ + 27y³ + 40×18
⇒100 = 8x³ + 27y³ + 720
⇒8x³ + 27y³ = 100 - 720
⇒8x³ + 27y³ = -620
Answer
⇒8x³ + 27y³ = -620
Similar questions