if 2x- 3y=10and xy=16.Find of 8x^3-27y^3
Answers
Answered by
1
AnSwEr
- 2x-3y=10
- xy=16
- 8x³-27y³
We know that a³+b³
=>a³+b³ = (a+b) (a²+b²-ab)
Breaking 8x³-27y³
(2x)³-(3y)³
=>(2x)³-(3y)³=(2x-3y) {(2x-3y)²-6xy)}
¶utting the values
___________________________
=>(2x)³-(3y)³=(2x-3y) {(2x-3y)²-6xy)}
=>(2x)³-(3y)³=(10) {(10)²-6×16)}
=>(2x)³-(3y)³=(10) {(100)-96)}
=>(2x)³-(3y)³=(10) {4)}
=>8x³-27y³=40
___________________________
Answered by
1
Step-by-step explanation:
2x-3y=10
xy=16
x=16/y
2 (16/y)-3y=10
32/y-3y=10
32-3y^2/y=10
32-3y^2=10y
-3y^2-10y+32=0
3y^2+10y-32=0
by using qudratic formula we can find out the value of y
y=2
x=16/2
x=8
8x^3-27y^3
8 (8)^3-27 (2)^3
4096-216
3880
Similar questions