Math, asked by pishuszar134, 10 months ago

If 2x + 3y = 11 and xy = 8, find the value of 4x2 +9y2.

Answers

Answered by Anonymous
3

Answer:

25

Step-by-step explanation:

Given that,

2x + 3y = 11

And

xy = 8

To find the value of 4x^2 + 9y^2.

Simplifying further, we will get,

= (2x)^2 + (3y)^2

It's in the form of a^2 + b^2

We can write,

  • a^2 + b^2 = (a+b)^2 -2ab

Therefore, we will get,

= (2x+3y)^2 - 2(2x)(3y)

= (2x+3y)^2 - 12xy

Substituting the values, we get,

= (11)^2 - 12(8)

= 121 - 96

= 25

Hence, the required value is 25.

Answered by BrainlyPopularman
7

ANSWER :

 \\  \longrightarrow \large{ \boxed{ \bold{4 {x}^{2}  + 9 {y}^{2}   = 25 }}} \\

EXPLANATION :

GIVEN :

2x + 3y = 11

• xy = 8

TO FIND :

4x² + 9y² = ?

SOLUTION :

According to the first condition –

 \\ { \bold{2x + 3y = 11}} \\

• Take Square on both side –

 \\  \implies{ \bold{(2x + 3y) {}^{2}  = (11) {}^{2} }} \\

• We know that –

 \\  \longrightarrow \:  \large{ \boxed{ \bold{( a + b ) {}^{2}  = {a}^{2}   +  {b}^{2}  + 2ab}}} \\

• So that –

 \\  \implies{ \bold{(2x ) {}^{2} + (3y) {}^{2} + 2(2x)(3y)    = 121 }} \\

 \\  \implies{ \bold{4 {x}^{2}  + 9 {y}^{2}  + 12xy   = 121 }} \\

 \\   \:  \:  \: { \bold{ \because  \:  \: xy = 8}} \\

• So that –

 \\  \implies{ \bold{4 {x}^{2}  + 9 {y}^{2}  + 12  (8) = 121 }} \\

 \\  \implies{ \bold{4 {x}^{2}  + 9 {y}^{2}  + 96 = 121 }} \\

 \\  \implies{ \bold{4 {x}^{2}  + 9 {y}^{2}   = 121 - 96 }} \\

 \\  \implies \large{ \boxed{ \bold{4 {x}^{2}  + 9 {y}^{2}   = 25 }}} \\

 \\ \rule{220}{2} \\

Similar questions