If 2x = 3y = 12z, then show that 1/z = 1/y + 2/x
Answers
Answered by
2
Answer:
Step-by-step explanation:
Solution:
Given
2^{x}= 3^{y}= (12)^{z}
Let \: 2^{x}= 3^{y}= (12)^{z}=k
i) 2^{x}=k \implies 2=k^{\frac{1}{x}}--(1)
ii)3^{y}=k \implies 3=k^{\frac{1}{y}}---(2)
iii)(12)^{z}=k \implies 12=k^{\frac{1}{z}}--(3)
Now,
\implies12=k^{\frac{1}{z}}
\implies 2^{2}\times 3=k^{\frac{1}{z}}
\implies k^{\frac{2}{x}}\times k^{\frac{1}{y}}=k^{\frac{1}{z}}
\implies k^{\frac{2}{x}+\frac{1}{y}}=k^{\frac{1}{z}}
\boxed { a^{m} × a^{n} = a^{m+n}}
\implies\frac{2}{x}+\frac{1}{y}=\frac{1}{z}
\boxed {If \: a^{m} = a^{n} \implies m = n}
Hence , proved
••••
vikasvikramsingh832:
I stuied in class 9 so answer me plese in my standards
Similar questions