if 2x+3y=13 and xy=6 find 8x^3+27y^3
Answers
Answered by
5
Given, 2x + 3y = 13 ------------- (1)
Cubing on both sides, we get
(2x + 3y)^3 = (13)^3
(a+b)^3 = a^3+b^3 + 3ab(a+b)
(2x)^3 + (3y)^3 + 3(2x)(3y)(2x + 3y) =2197
8x^3 + 27y^3 + 18xy(13)= 2197
8x^3 + 27y^3 + 18(6)(13)= 2197
8x^3 + 27y^3 = 2197 - 1404
8x^3 + 27y^3 = 793
Hope this helps!
Cubing on both sides, we get
(2x + 3y)^3 = (13)^3
(a+b)^3 = a^3+b^3 + 3ab(a+b)
(2x)^3 + (3y)^3 + 3(2x)(3y)(2x + 3y) =2197
8x^3 + 27y^3 + 18xy(13)= 2197
8x^3 + 27y^3 + 18(6)(13)= 2197
8x^3 + 27y^3 = 2197 - 1404
8x^3 + 27y^3 = 793
Hope this helps!
Answered by
1
Answer is in attachment.
8x^3+27y^3=793
8x^3+27y^3=793
Attachments:
Similar questions