if , 2x+3y=23 and xy=6 find the value of 8x³+27y³
Answers
Answer:
We have:xy=6 so x=6/y
Now putting value of x in the equation 2x+3y=13 then we get,
2*(6/y)+3y=13
12/y+3y=13
(12+3y^2)/y=13
12+3y^2=13y
3y^2–13y+12=0
3y^2–9y-4y+12=0
3y(y-3)-4(y-3)=0
(3y-4)(y-3)=0
So,3y-4=0 or y-3=0
y=4/3 or y=3
Now we have two values of y so we will check which one is correct by relation xy=6,
When y=4/3 ; x=6/y i.e.x=6/(4/3)>>>x=9/2
When y=3; x=6/y i.e.x=6/3>>>x=2
So now by using xy=6,
xy=4/3*9/2>>>2*3>>>6
xy=2*3=6
So both value of x & y satisfy the xy=6 so now will find value of 8x^3+27y^3
8*(9/2)^3+27*(4/3)^3=729+64=793
8*(2)^3+27(3)^3=8*8+27*27=64+729
>>>793
Cubing on both sides
(2x+3y)³=13³
8x³ +27y³+3(2x)(3y)(2x+3y)=13³
According to (a+b)³ formula which is equal to a³+b³+3ab(a+b)
8x³+27y³+18xy(2x+3y)=2197
8x³+27y³+18(6)(13)= 2197
8x³+79327y³+1404=2197
8x³+27y³=2197–1404
== 793
And please ☺️ follow me