Math, asked by Yogesh2163, 11 months ago

If 2x + 3y = 34 and x + y/y = 13/8 , then find the value of 6x + 4y

Answers

Answered by baratzind97
3

This answer will help you

Ok bro

thanks for this opportunity

follow me (if you want)

Attachments:
Answered by payalchatterje
0

Answer:

Required value of (6x+4y) is 62.

Step-by-step explanation:

Given,2x+3y = 34 ......(1) and

  \frac{x + y}{y}  =  \frac{13}{ 8}  \\  \frac{x}{y}  +  \frac{y}{y}  =  \frac{13}{8}  \\  \frac{x}{y}  + 1 =  \frac{13}{8}  \\  \frac{x}{y}  =  \frac{13}{8}  - 1 \\  \frac{x}{y}  =  \frac{13 - 8}{8}  \\  \frac{x}{y}  =  \frac{5}{8}  \\ x =  \frac{5}{8} y....(2)

We are putting value of x in equation (1),

2  \times \frac{5y}{8}  + 3y = 34 \\  \frac{5y}{4}  + 3y = 34 \\  \frac{5y + 12y}{4}  = 34 \\  \frac{17y}{4}  = 34 \\ y = 34 \times  \frac{4}{17}  \\ y = 2 \times 4 \\ y = 8

From equation (2),

x =  \frac{5}{8}  \times 8 \\ x = 5

Now,

6x + 4y = 6 \times 5 + 4 \times 8 \\  = 30 + 32 \\  = 62

Required value of (6x+4y) is 62.

This is a problem of Algebra.

Some important Algebra formulas.

(a + b)² = a² + 2ab + b²

(a − b)² = a² − 2ab − b²

(a + b)³ = a³ + 3a²b + 3ab² + b³

(a - b)³ = a³ - 3a²b + 3ab² - b³

a³ + b³ = (a + b)³ − 3ab(a + b)

a³ - b³ = (a -b)³ + 3ab(a - b)

a² − b² = (a + b)(a − b)

a² + b² = (a + b)² − 2ab

a² + b² = (a − b)² + 2ab

a³ − b³ = (a − b)(a² + ab + b²)

a³ + b³ = (a + b)(a² − ab + b²)

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ5

Similar questions