Math, asked by bhanukumar1034, 9 months ago

If 2x/3y=3y/4z then show that 4x square -9y square+16z square=(2x -3y+4z) (2x+3y+4z)

Answers

Answered by pulakmath007
18

SOLUTION

GIVEN

 \displaystyle \sf{ \frac{2x}{3y} =  \frac{3y}{4z}  }

TO PROVE

 \sf{4 {x}^{2} - 9 {y}^{2}  + 16 {z}^{2}    = (2x - 3y + 4z)(2x + 3y + 4z)\: }

FORMULA TO BE IMPLEMENTED

We are aware of the identity that

 \sf{  {a}^{2} -  {b}^{2} = (a + b)(a - b)  \: }

PROOF

Here it is given that

 \displaystyle \sf{ \frac{2x}{3y} =  \frac{3y}{4z}  }

On Cross Multiplication we get

 \sf{9 {y}^{2} = 8xz }

RHS

 \sf{ =  (2x - 3y + 4z)(2x + 3y + 4z)\: }

 \sf{ = (2x + 4z- 3y )(2x+ 4z + 3y )\: }

 \sf{ = (2x + 4z +  3y )(2x+ 4z  - 3y )\: }

 \sf{ ={ (2x + 4z)}^{2} - {(3y)}^{2} } \: (using \: above \: identity)

 =  \sf{ 4 {x}^{2} + 16xz + 16 {z}^{2}   - 9 {y}^{2} \: }

 =  \sf{ 4 {x}^{2} + 16xz + 16 {z}^{2} -    8xz\: } \: ( \because \:  \sf{9 {y}^{2} = 8xz })

 =  \sf{ 4 {x}^{2} + 8xz + 16 {z}^{2} \: }  \:

 =  \sf{ 4 {x}^{2} + 9 {y}^{2}  + 16 {z}^{2} \: } (\because \sf{9 {y}^{2} = 8xz })

= LHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The product of two successive multiples of 5 is 300. What are the values of these multiples

https://brainly.in/question/26660243

Similar questions