Math, asked by Toska1076, 1 year ago

If 2x-3y=4,find the value of 8xcube -27ycube-72xy

Answers

Answered by kashish192
2
2x-3y=4
cubing both sides
(2x-3y)³=(4)³
as we know
(a-b)³=a³-b³-3ab(a-b)
so,
(2x-3y)³=(4)³
8x³-27y³-3(2x)(3y)(2x-3y)=64
8x³-27y³-18xy(4) =64. (bcoz 2x-3y=4 given)
8x³-27y³-72xy=64
Answered by Salmonpanna2022
1

Step-by-step explanation:

 \bf \underline{Given-} \\

\textsf{2x - 3y = 4}\\

 \bf \underline{To\: find-} \\

\textsf{the value of 8x³ - 27y³ - 72xy = ?}\\

 \bf \underline{Solution-} \\

\textsf{We have,}\\

\textsf{2x - 3y = 4}\\

\textsf{Cubing on both sides, we get}\\

\textsf{(2x - 3y)³ = (4)³}\\

\textsf{★Now, comparing the given expression with (a-b)³, we get}\\

\textsf{\: \: \: \: \: a = 2x and b = 3y.}\\

\textsf{★Using identity (a-b)³ = a³-b³-3ab(a-b), we have}\\

\textsf{(2x - 3y)³ = (4)³}\\

 \sf{ \implies \: (2x {)}^{3}  - (3x {)}^{3}  - 3(2x)(3y)(2x - 3y) = 64} \\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 18xy(2x - 3y) = 64 } \\

[\textsf{Since, (2x - 3y) = 4 (Given)}]\\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 18xy(4) = 64 } \\

\sf{ \implies \: 8 {x}^{3}  - 27 {y}^{3} - 72xy= 64 } \\

 \bf \underline{Hence, the\: value\: of\: 8x³-27y³-72xy \: is\: 64.} \\

Similar questions